

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

¹H NMR Study of the Photoisomerization of Cinamylidene-2-Methyl-5-Chloro aniline

Layla M. N. Saleem^a; Ahmed S. Authman^b

^a Department of Chemistry, College of Education, University of Mosul, Mosul, Iraq ^b Medical Department, Council of Technical Institute, Erbil, Iraq

To cite this Article Saleem, Layla M. N. and Authman, Ahmed S.(1992) '¹H NMR Study of the Photoisomerization of Cinamylidene-2-Methyl-5-Chloro aniline', Spectroscopy Letters, 25: 6, 799 – 809

To link to this Article: DOI: 10.1080/00387019208020712

URL: <http://dx.doi.org/10.1080/00387019208020712>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

¹H NMR Study of the Photoisomerization of
Cinamylidene-2-Methyl-5-Chloro aniline

Layla M.N. Saleem^{(1)*}, Ahmed S. Authman⁽²⁾

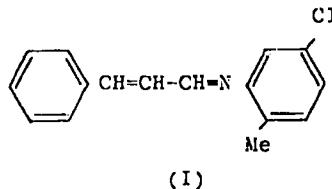
(1) Department of Chemistry, College of Education,
University of Mosul, Mosul, Iraq,

(2) Medical Department, Council of Technical
Institute, Erbil, Iraq.

ABSTRACT

Cinamylidene-2-methyl-5-chloro-aniline undergoes isomerization from the trans form to the cis form under irradiation with u.v. light at room temperature. The isomerization was studied in three solvents and the % cis was found to be in the following order: in DMSO > CDCl₃ > CCl₄. The rate of the process of isomerization was found to be a first order one.

Introduction


Cinamylideneanilines are known to be present in a high percentage (> 99 %) in the stable trans form, and usually they give rise to a strongly overlapping complex patterns¹⁻³. Cinamyl-

*Author to whom correspondence should be addressed.

ideneanilines^{4,5} with their benzylideneanilines analogues^{6,7} can transform to the cis form by addition of lanthanide shift reagents. However, benzylideneanilines can also transform to the less stable cis form by irradiation⁸ by u.v. light at low temperatures (-70° to -100°C), but the cis form obtained returns back to the trans on warming the sample to room temperature.

In the present work we would like to present the isomerization of cinamylidene 2-methyl-5-chloro-aniline (I) on irradiation by u.v. light at room temperature in three solvents by NMR spectroscopy.

Experimental:

Compound (I) was prepared by mixing an equimolar amounts of cinamaldehyde with the substituted aniline according to the procedure described by El-Bayoumi and coworkers⁹.

The NMR measurements were performed on a 60 MHz Hitachi Perkin Elmer NMR spectrometer, except for the sample in CDCl_3 solvent which was measured on 90 MHz Brucker connected with an Aspect 2000 Computer (8K domain). The pulse width was 3 μs with zero delay. Spectra were recorded for substrates with concentration of (0.274 M) in CDCl_3 , CCl_4 and DMSO. TMS was used as a standard reference.

Duplicate samples were prepared in each solvent and were exposed to u.v. light (Gallenkamp u.v. lamp) for various periods of time, and their NMR spectra were recorded after each exposure.

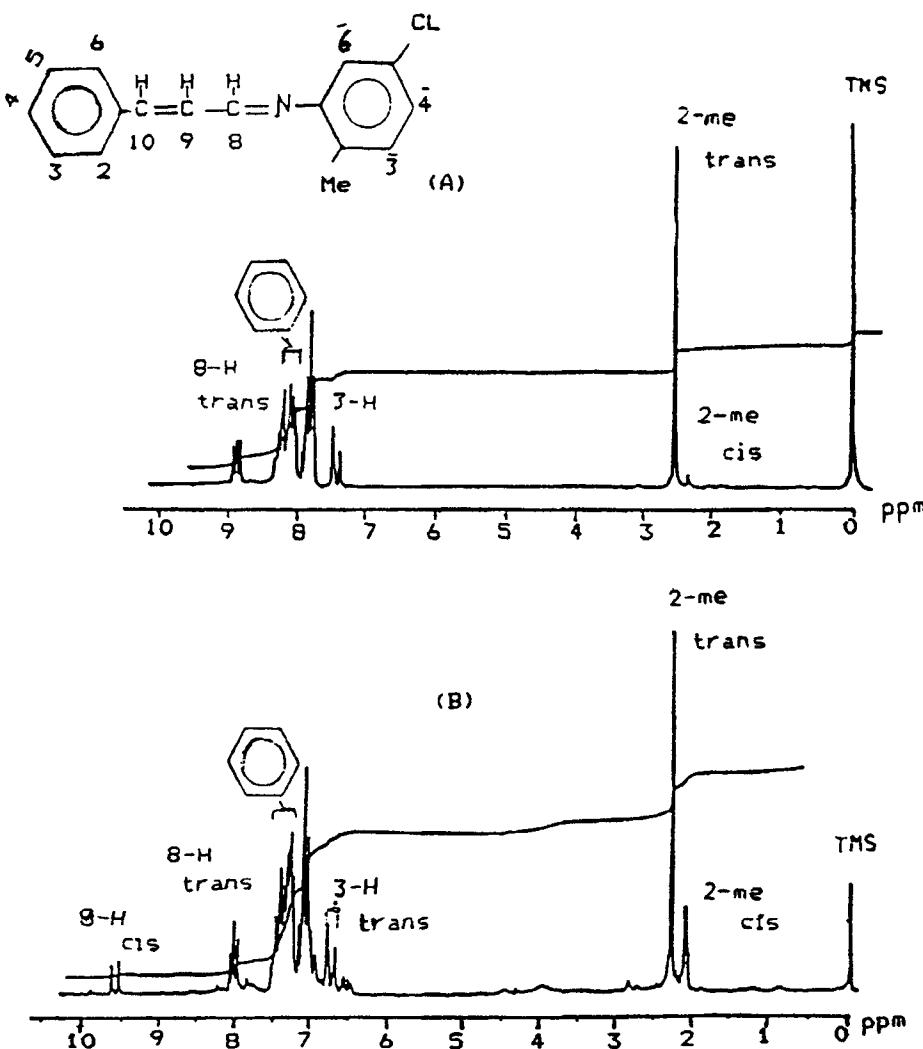


Fig. 1. The ^1H NMR spectrum of cinamylidene-2-methyl-5-chloro-aniline in CDCl_3 (0.1 M) measured at 90 MHz (A) before irradiation (B) after irradiation with u.v. light.

Table (1). The calculated % cis of cinamylidene-2-methyl-5-chloro aniline in CDCl_3 , CCl_4 and DMSO after irradiation with u.v. light.

CCl_4		CDCl_3		DMSO	
Time (hours)	% cis	Time (hours)	% cis	Time (hours)	% cis
0	3.0	0	3.0	0	3.0
36.5	3.8	39.5	5.3	36.3	5.3
164.3	5.1	55.0	6.0	103.3	9.0
234.3	6.4	96.0	8.6	122.3	11.0
317.8	7.0	112.1	9.3	234.3	17.4
361.8	8.4	193.0	13.0	279.3	18.0
415.0	8.7	235.5	16.0	317.8	21.4
518.4	11.1	305.5	19.0	361.8	24.0
552.4	9.8	342.0	20.6	415.8	28.0
687.3	12.0	366.0	22.5	518.3	33.0
		450.0	25.0		

For the decay experiment of the cis, a sample (in CDCl_3) was immersed in a thermostat which was a fixed at 50°C , and the disappearance of the cis was followed by measuring the NMR spectra after different intervals of time.

Results and Discussions:

The ^1H NMR spectrum of cinamylidene-2-methyl-5-chloro aniline in CDCl_3 measured at 90 MHz (Fig. 1 A) show that it is present in a large extent in the trans form. A small signal (2.35 ppm) integrating 3 % corresponding to the cis isomer was observed near the methyl resonance signal (2.55 ppm). Chemical

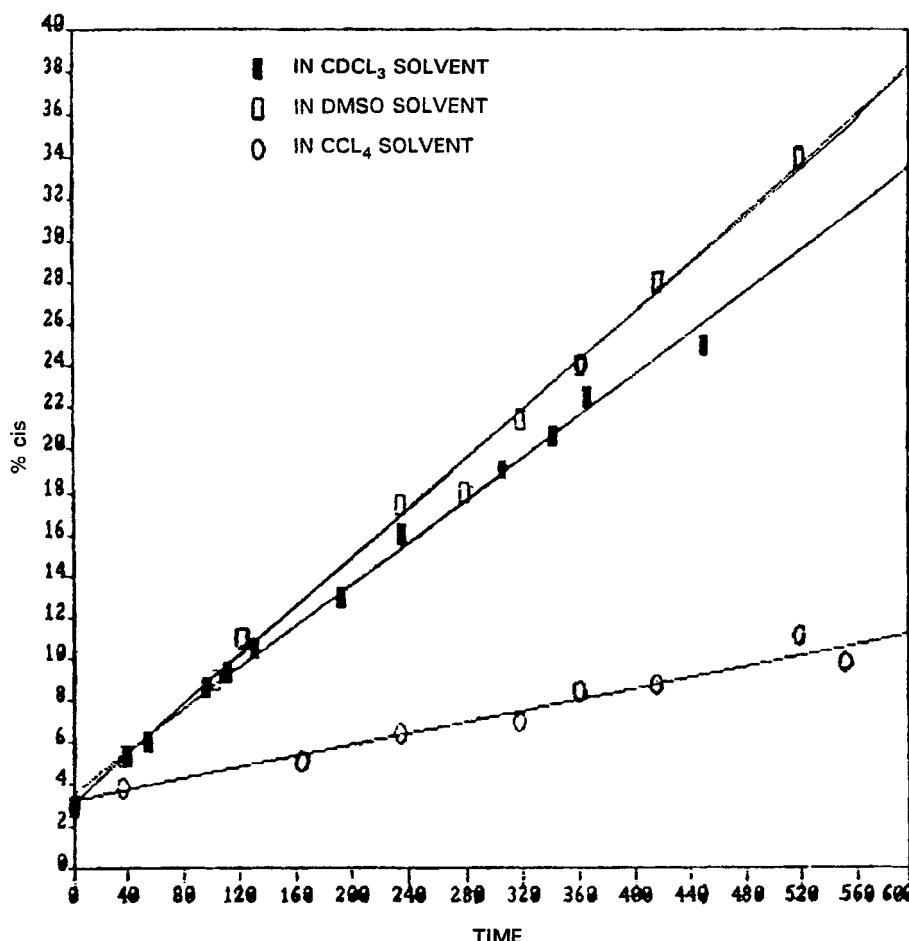


Fig. 2. Plot of the % cis of cinamylidene-2-methyl-5-chloro aniline at different times of irradiation in different solvents.

shifts for the other protons in the spectrum are 8-H (8.00 ppm), 4-H (6.70 ppm), the aromatic protons (7.21 - 7.54 ppm) and the olefinic protons (6.98 - 7.17 ppm).

Compound (I) in CDCl_3 was irradiated by u.v. light at room temperature, for different times. Its NMR spectrum show that the

Table (2). $\ln(a-x)^*$ values for cinamylidene-2-methyl-5-chloro aniline calculated at different times in CCl_4 , CDCl_3 and DMSO.

Time (hours)	CCl_4		CDCl_3		DMSO	
	Time (hours)	$\ln(a-x)$	Time (hours)	$\ln(a-x)$	Time (hours)	$\ln(a-x)$
0	4.574	0	4.574	0	4.574	
36.5	4.534	39.5	4.518	36.3	4.518	
164.3	4.520	55.0	4.510	103.3	4.477	
234.3	4.506	96.0	4.481	122.3	4.454	
317.8	4.499	112.1	4.473	234.3	4.377	
361.8	4.484	193.0	4.430	279.3	4.369	
415.0	4.480	235.5	4.394	317.8	4.325	
518.4	4.453	305.5	4.356	361.8	4.290	
552.4	4.468	342.0	4.335	415.8	4.234	
687.3	4.442	366.0	4.310	518.3	4.158	
		450.0	4.276			

(*) $\ln(a-x)$ represent the % trans before irradiation (97 %) - % cis obtained.

small signal which was identified as the cis (the minor component, 2.35 ppm) increased in its intensity with increasing periods of irradiation. It was also noticed that a new signal was observed to the low field (a doublet, 9.55 ppm, $J = 8$ Hz) (See Fig. 1 B), which was attributed to 8-H (cis). This signal was accompanying the spectra of all the irradiated samples. Other signals in the spectrum were not possible to identify due to the collapsing of the signals of the two forms. It is worth to notify that 8-H (cis)

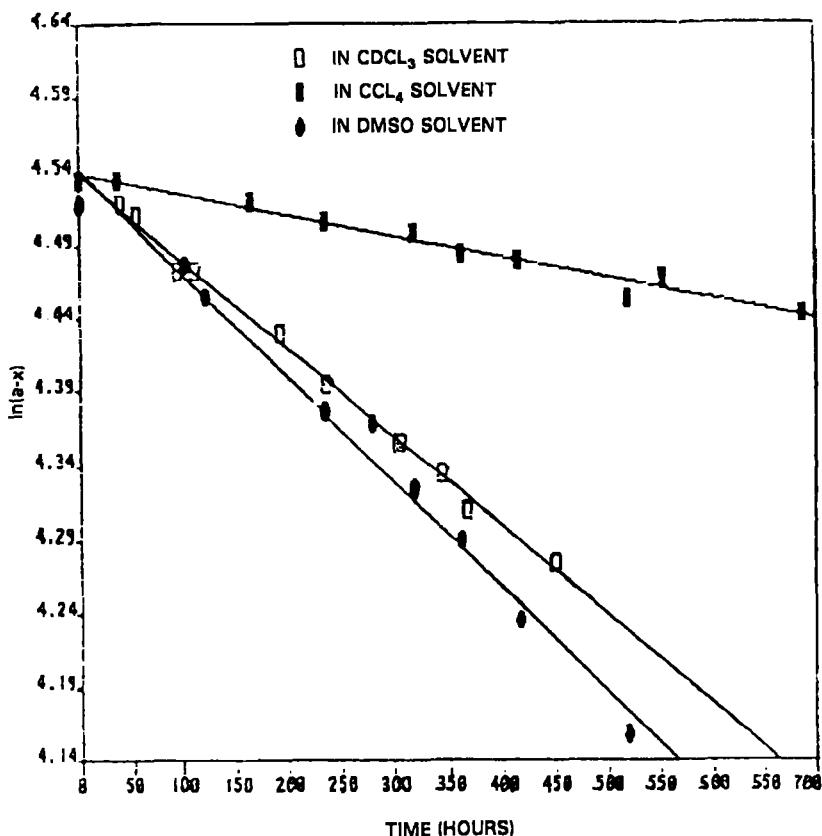


Fig. 3. Plot of $\ln(a-x)$ vs. time in different solvents for cinamylidene-2-methyl-5-chloroaniline.

signal was observed in our previous work of the isomerization with LSR⁴.

The % cis values obtained as a result of the irradiation of (I) in CDCl_3 are given in Table 1.

Other irradiation experiments were performed for (I) in CCl_4 and DMSO and similar observations as those observed in CDCl_3 were obtained, and the results are also given in (Table 1).

Table (3). The values of % cis for cinamylidene-2-methyl-5-chloroaniline (in CDCl_3) after heating at 50°C for different times.

Time (hours)	% cis	Time (hours)	% cis
0	25.0	172.0	19.1
29.0	23.2	243.0	17.0
45.0	22.5	267.0	14.2
60.0	22.0	353.0	13.0
97.0	20.6	381.0	11.5
112.3	20.8	423.0	12.0
131.1	30.45	634.0	6.0

The % cis values were plotted vs. time of irradiation for the three solvents, linear plots were obtained (See fig. 2) with slopes given as: $(1.32 \times 10^{-2} \pm 0.214)$, $(4.97 \times 10^{-2} \pm 0.361)$ and $(5.88 \times 10^{-2} \pm 0.384)$ in CCl_4 , CDCl_3 and DMSO, respectively. These values, as can be seen, are in the order of increasing polarity of the three solvents.

It can be seen from the above results that cinamylidene-aniline (unlike benzylideneanilines⁸) can isomerize at normal temperature. This can be explained due to the presence of conjugation in the former one which results in the delocalization of the electrons, this will lower or decrease the double bond character which make the rotation freer and hence the formation of the cis will be more easier.

The rate of isomerization was followed by plotting $\ln(a-x)$ vs. time (Table 2), straight lines were obtained for each experiment (See fig. 3) with slopes given as $(6.004 \times 10^{-4} \pm 0.029)$,

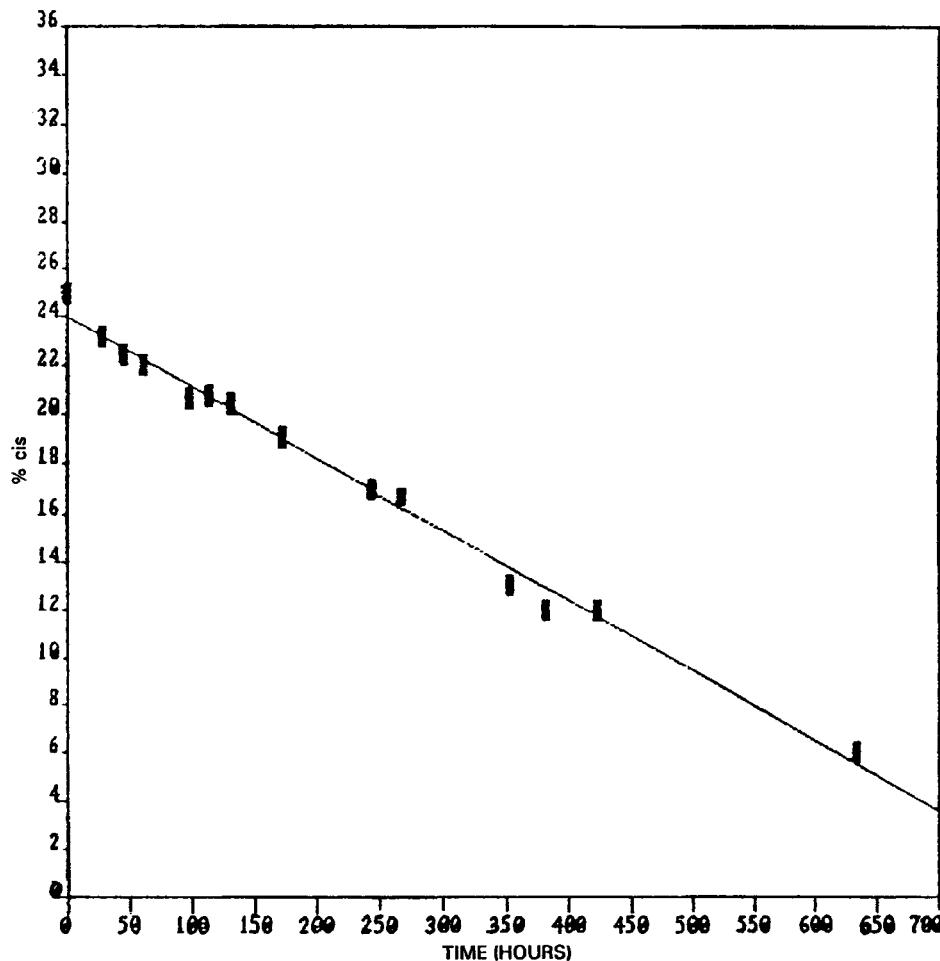


Fig. 4. Plot of % cis vs. time of cinamylidene-2-methyl-5-chloroaniline in CDCl_3 after heating the sample at 50°C .

$(1.411 \times 10^{-4} \pm 0.029)$ and $(7.07 \times 10^{-4} \pm 0.0197)$ for CCl_4 , CDCl_3 and DMSO, respectively, indicating a first order process.

The process of photoisomerization leads to the formation of the cis which remains stable for a long period. The stability of the cis was checked by measuring the NMR spectra of the sample after leaving it at N.T. for long times (more than six months), and it was found that the % cis value was almost the same.

The effect of temperature on the stability of cis isomer was studied by heating the sample (in CDCl_3) at 50°C for various periods and measuring its NMR spectrum each time. The % cis began to decrease as the time of heating increases (Table 3), until the compound returns back to its original form.

A plot was performed between % cis vs. time, a linear relation was obtained (Fig. 4).

These results indicate that the process is a reversible photoisomerization process (and no other process can be detected) since the sample returns back to its original form and its NMR is identical to that before irradiation.

References

1. M. Anteunis and A. De Bryn, *J. Magn. Res.*, 8, 7-14 (1972).
2. N. Haulet, M.L. Pilloux, G.J. Martin and J. Pornet, *Org. Magn. Res.* 7 (7) 326 (1975).
3. N.T. Kudryavtsev, K.M. Titina, A.N. Popov, G.A. Selivanova, A.A. Iofan, V.I. Trifonov and A.V. Kubasov, *Prom. Obraztsy, Tovarye Znaki* 74, 39, (1979). From *Chem. Abstr.*, Vol. 92, 188266 t (1980).
4. L.M.N. Saleem, G.M.Q. Bashi, *Iraqi J. Sci.*, 31, 159, (1990).
5. L.M.N. Saleem, A.O. Omar, *Iraqi J. Sci.*, 30, 9 (1989).
6. L.M.N. Saleem, *Org. Magn. Res.* 19, 176 (1982).

7. J.M.A. Al-Rawi, L.M.N. Saleem, *Magn. Res. Chem.*, Vol. 27, 540 (1989).
8. M. Kobayashi, M. Yoshida and H. Minato, *J. Org. Chem.*, 41, 3322 (1976).
9. H.A. El-Bayoumi, M. El-Aasser and F. Abdul-Halim, *J. Am. Chem. Soc.*, 93, 586 (1971).

Date Received: 02/07/92
Date Accepted: 03/06/92